

NANOLITO NETWORK Zaragossa 26th may 2009

The technical support in a French Technology Platform of the Basic Technological Research Network The example of LAAS-CNRS

H. Granier

Laboratory for Analysis and Architecture of Systems

Research topics The people The structure Technicals means

AAS: SYSTEMS and APPLICATIONS

- Kinds of systems
 - Micro and nano systems
 - Embedded Systems
 - Integrated Systems
 - Large Scale distributed
 Systems
 - Biological Systems
 - Mobiles Systems
 - Autonomous Systems
 - Critical Infrastructures

- Applications
 - Aeronautics
 - Space
 - Transports
 - Energies
 - Services
 - Health
 - Telecommunications
 - Environment
 - Production
 - Military

AAS-CNRS

LAAS : THE PEOPLE

Searchers : 534 86 CNRS, 1 INSERM

105 Professors-searchers

9 CNRS hosts

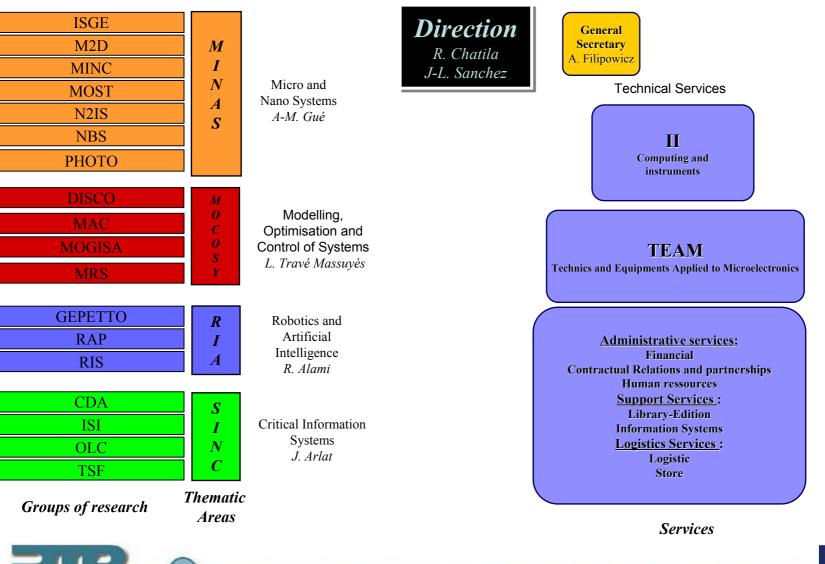
- 1 detached from industry
- 7 contractual searchers
- 6 Associated serachers

44 Post-Phd

273 PHD

2 CNAM (continuous formation)

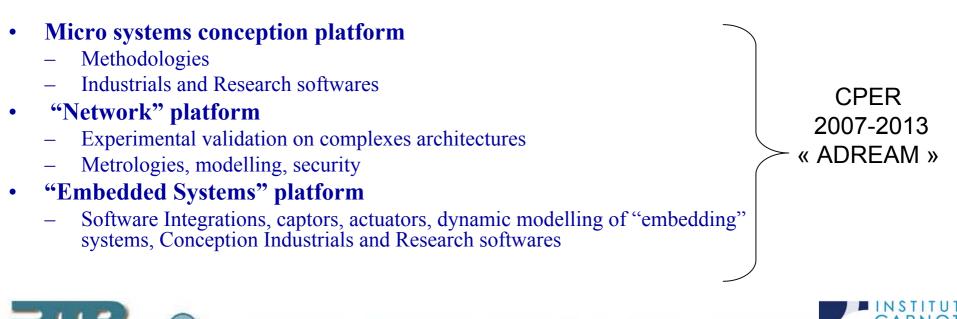
Technical Staff : 115 87 ITA (CNRS) 5 ITAOS (University/Engineers school) 23 Contractuals

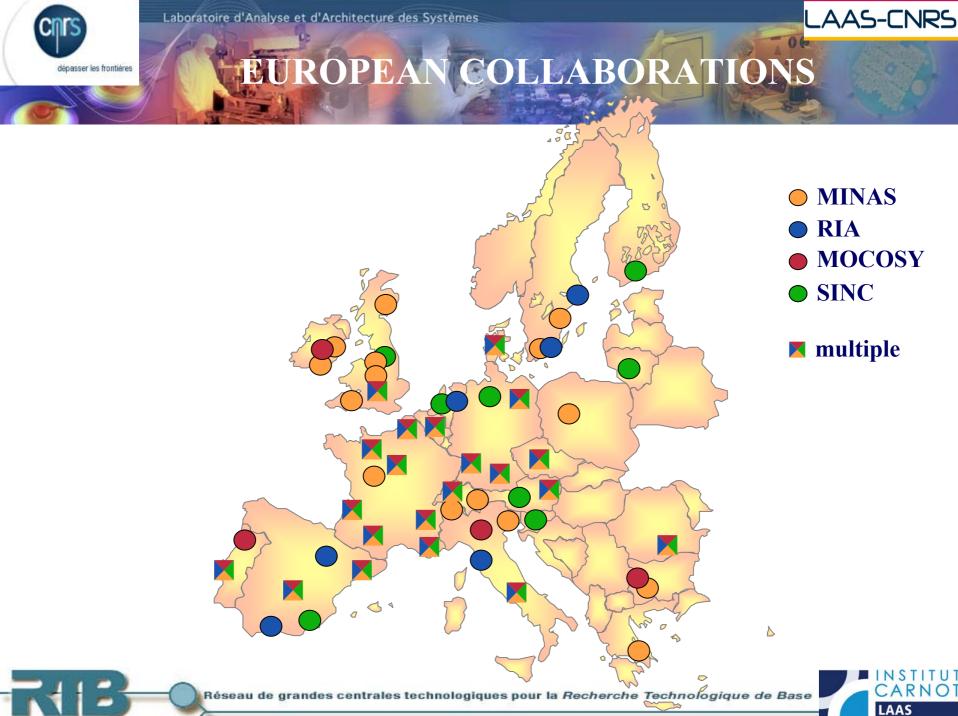

> **649** At the 1st of January 2009

AAS-CNRS

LAAS : STRUCTURE

LAAS-CNRS




• **BTR technological platform :** microelectronics, optoelectronics components, micro and nano systems

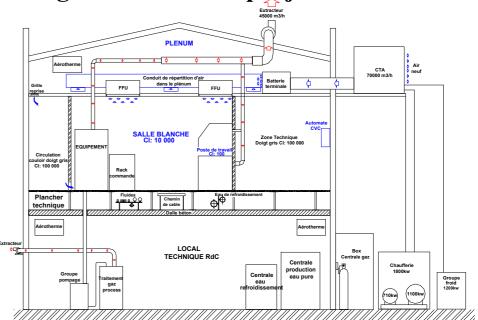
LAAS

- Characterization platform: components tests, micro-nano systems: electronic, optical, UHF
- Robotic platform: a tenth of robots

SUPPORT TO MICRO AND NANO SYSTEMS DEVELOPMENTS

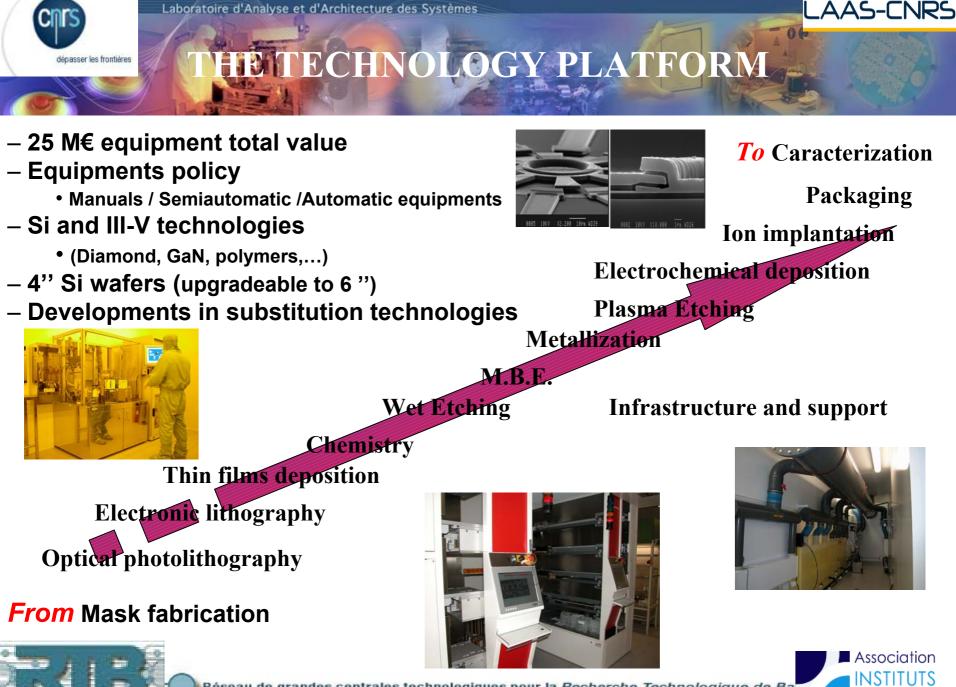
The technology platform The technical staff

THE TECHNOLOGY PLATFORM


Facilities

Support endogenous and exogenous research projects

- Adaptative structure
 - 4 levels architecture
- 1500 m² clean room
 - Specialized areas
- From class 10 000 up to class 100
 - Upgradeable (Filter Fan Units)
- Control of running costs
 - 1.5 M€ in 2008


LAAS-CNRS

Association INSTITUTS

ARNO

Investments

- Since 2003 : 16.5 M€ (half from LAAS own resources)
- Building : 2.4 M€ (CPER) + 3.9 M€ (RTB)
- Equipment : 10.2 M€

Réseau de grandes centrales technologiques pour la Recherche Technologique de Ba

CARNO

DUIPMENTS POLICY

Complementary equipments for an adapted support

Flexibility

(adaptability to projects)

Development

(parameters understanding, prototyping)

VS.

Specificity

(axes)

VS.

Repeatability

(Formalization, valorization)

Constant investments (more then 3 M€ in 2007)

- BTR Conventions
- Institutional (CNRS, Region,..) •
- Collaborations et partnerships (ANR, Europe, .., common, affiliates club, ...)
- Own resources (COMEQ, general interest of the laboratory)

A planning taking into account

The necessary youth of some equipments "Alternative" technologies

Technical developments Technical prospective

AAS-CNRS

LAAS

MATERIAL ELABORATION

- Molecular Beam Epitaxy (GaAs based)
 - Photonics structures
 - Surface nano structurations

- Chemistry
 - Sol gel, polymers, ...
 - Synthesis Developments

- Furnaces
 - Oxidation Si, III-V alloys (Al based)
 - SiO_xN_y
 - Si3N4
 - Sipoly
 - LPCVD

• Lithography

Masks fabrication

```
 1-2 µm
 0.4 Projection lithography
 0.4 Electron Beam Lithography
```


ATERIAL « SHAPING »

AAS-CNRS

LAAS-CNRS

 Ω meg

MATERIAL « SHAPING »

• Etching

DRIE (Si 4'', 6'' and glass)

ICP

(Si and derivate, III-V, Polymers, metals)

Stripping

Chemistry


(metals, resists,..)

кон, тман

Vapor phase (in 2009)

LAAS

001

X8,

INn 4D1

_AAS-CNRS

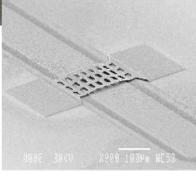
MATERIAL « SHAPING »

Deposition

PVD

Electrochemistry

(Au, Cu, magnetic alloy)


PECVD

(SiO2, Si3N4)

LPCVD SiOxNy, Si3N4, Si poly

LAAS-CNRS

MATERIAL « SHAPING »

Packaging

Dicing

Pick and place

(manual, semi-auto)

Connexion (wires, flip chip)

WLP (CMP, grinding, Wafer bonding)

MATERIAL TREATMEN

• Thermal

(Annealing, RTA, diffusion, redistribution)

- For surface preparation (plasma, chemical)
- Ion Implantation

AAS-CNRS

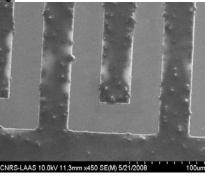
LAAS-CNRS

CHARACTERIZATIO

- 2 SEM (X surface analysis, variable pressure)
- AFM
- Optical Microscopy (2D, 3D)
- Profilometers
- Ellipsometers
- 4 probes

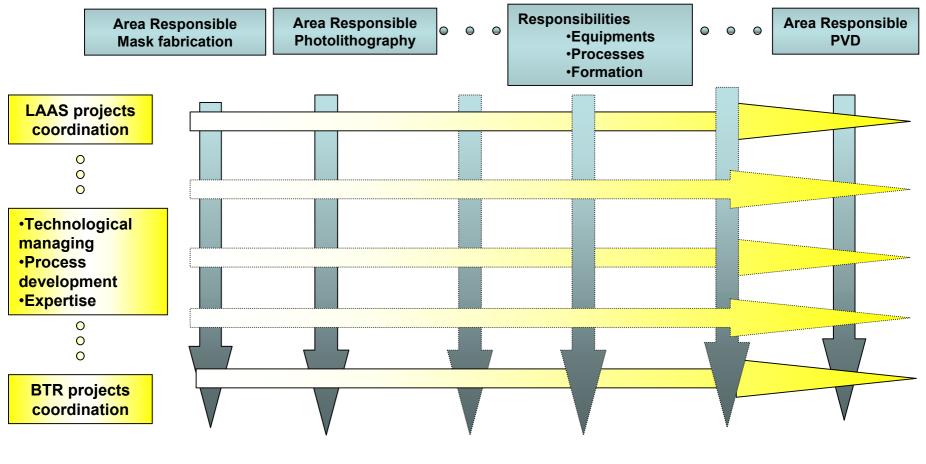
A CONSTANT EVOLUTION

- ALTERNATIVES TECHNOLOGIES
 - Ink Jet
 - Screen printing
 - Nano replication
 - UV NIL


• UP TO COME

- Low T° PECVD
- 1800° C furnace
- Spray coater
- Vapor phase etching
- Wafer bonding (duplication)
- Nano replication
 - Micro contact printing
 - Hot embossing
- AVD (OMCVD or ALD?)

AAS-CNRS


THE STAFF Cechnics and Equipments Applied to Microelectronics

AAS-CNRS

CARN

LAAS

30 Engineers, Engineer Assistants and Technicians directly under the authority of the director

Elaboration, shaping, treatment et characterization of materials

Elaboration							
shaping,							
treatment							

In technical areas, open to all projects

Infrastructure and Support	Mask Fabrication	Photo -lithography	Electron beam lithography	Molecular Beam Epitaxy	Chemistry	Thermal Treatments	PVD	Electro- chemistry - Si wet etching	Plasma etching	Packaging	Ion Implantation	Ink Jet	Nano replication
Fadel Paul	Calmon Pierre	Conédéra Véropique	Carcenac Franck	Arnoult Alexandre	Doucet	Rousset Bernard	Salvagnac Ludovic	Dilhan Monique	Dubreuil Pascal	Granier	Imbernon Eric	Fabre Norbert	Daran Emmanuelle
		Véronique			Jean Baptiste			Monique		Hugues			
IE2	François.	IR1	IR2	IR2	IE2	IR1	AI	IR2	IR2	IR2	IR2	IRHC	IR1
Benoit	IR2	Mazenq	Daran	Lacoste	Mesnilgrente	Bouscayrol	Pinaud	Bourrier	Belharet ¹	Do Conto	Marrot	Conédéra	Jalabert ²
Monique	Aouba ¹	-	Emmanuelle	Guy	Fabien	Laurent	Sébastien	David	Djaffar	Thierry	Jean	Véronique	Laurent
TCE	Stéphane	AI	IR1	IE2	AI	AI	AI	AI	IR2	TCE	Christophe	IR1	IR2
	IR2								2	~	TCE		
Maiorano		Mesnilgrente							Jalabert ²	Colin		Mesnil-	
Antoine		Fabien							Laurent	René		grente	
TCN		AI							IR2	AJTP2		Fabien	
Fourcade										Charlot ¹		AI	
Christine										Samuel			
TCN										IE2			
1 CIV										1122			

1 : Contractual

2 : Detached at LIMMS in Tokyo

LAAS-CNRS

TEAM : PRECISE MISSIONS

Responsibility for the equipment

- Implementation, safety
- Maintenance, evolutions
- Appraises and technical survey

• Responsibility for operation of the clean room infrastructure

- Adaptation, development and maintenance
- Management of the tasks of general interest (management of process gas, safety, provisioning, etc...)

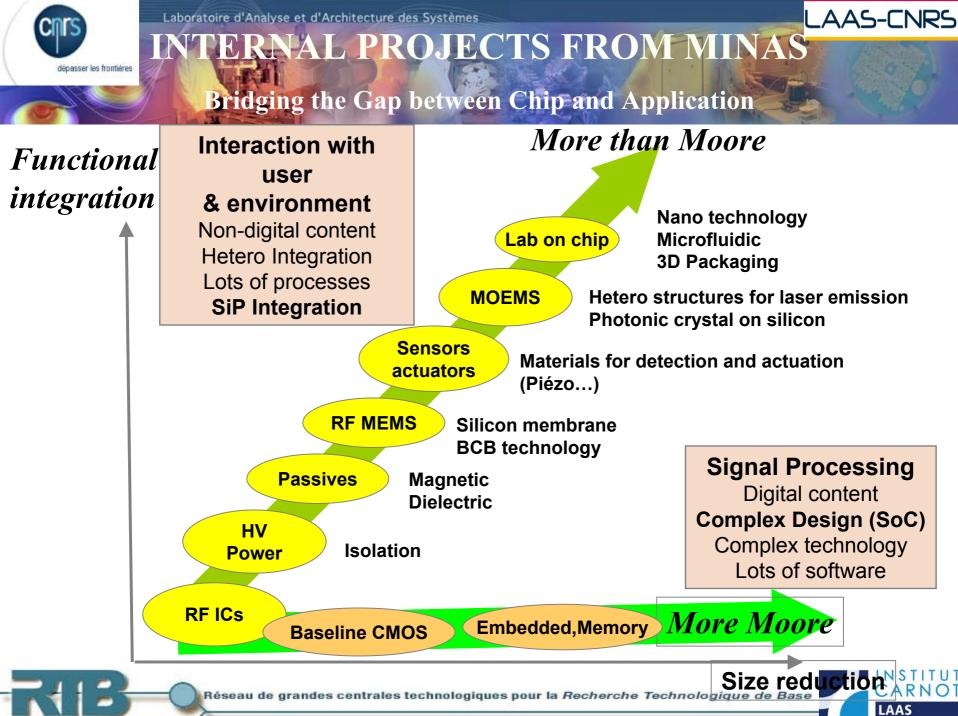
• Support to MINAS research projects

- Development of basic and specific processes (70 projects in 2009)
- Coordination, participation in the technological realizations
- Assistance, technical management of the PHD

• Hosting and support of exogenous projects (nearly 50 in 2008) (member of network RTB)

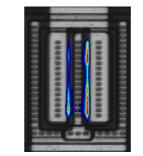
- Expertise/administration of the requests
- Interactions with the applicants
- Hosting /formation of external people
- Realization of the projects

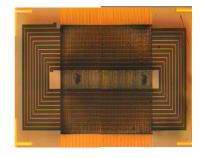
• Formation, capitalization, valorization and transfer

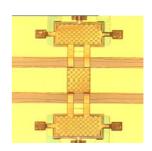


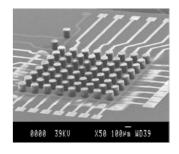
THE PROJECTS From the lab From the BTR network

Origins The management Some examples

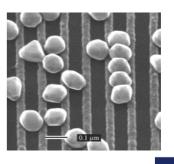


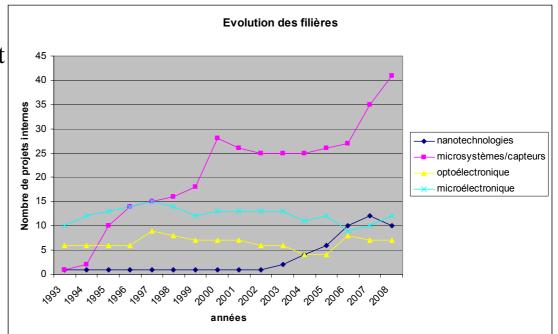



Laboratoire d'Analyse et d'Architecture des Systèmes INTERNAL PROJECTS : RESEARCH GROUPS


MINAS: Micro Nano Systems

- ISGE: Power Integration and management Systems
- M2D: Detection Micro devices and Microsystems
- MINC: Micro nano systems for communications
- N2IS: Nano Engineering and Systems Integration
- MOST: Microwaves and optronics for communication systems
- NBS: Nano biosystems
- PHOTO: Photonics




.AAS-CNRS

LAAS-CNRS

NTERNAL PROJECTS : MANAGEMENT

- COMTEAM
 - Under the presidency of the director
 - Analyze the projects
 - Activities of general interest
 - Calculation of IT needed implications
 - Activities analyze
 - Analyze BTR actions
 - Helps to define :
 - Lacks of IT
 - Needed equipments
 - Inventories and evolution of projects

depasser les frontières EXTERNAL PROJECTS : BIR NETWORK : GENESIS AND OBJECTIVES

- <u>2003</u> Dedicated program decided by Ministry of Research:
- "A national network of large technological facilities and Basic Technological Research (BTR) in micro and nanotechnologies "
- 100 M€ National program leaded by CEA and CNRS (Renatech GIS)
- 3 different complementary objectives.
- To enhance the level of equipment
 - A few selected clean rooms in France (so-called large technological facilities)
 - A network, open to the need of the academic scientific community and of industrial research projects.
- To focus a scientific program on few priority areas
 - Micro- and Nanoelectronics, Nanosciences and Nanotechnologies, Photonics and optoelectronics, Micro Nano and Biosystems and Heterogeneous integration of technologies
- To enhance the use of joint vision and exploitation of research results
 - Setting up a unit, in charge of the scientific survey in the field of Micro and Nanotechnologies (OMNT).
 - Promoting patenting and researcher mobility.

AAS-CNRS

EXTERNAL PROJECTS BTR FACILITIES

LAAS-CNRS

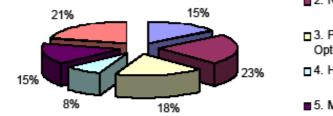
CARNO1

LAAS

Laboratoire d'Analyse e EXATEERNALE PROJECTS BTR NETWORK : FACILITY OPENING TO ACADEMIC AND INDUSTRIAL COMMUNITY

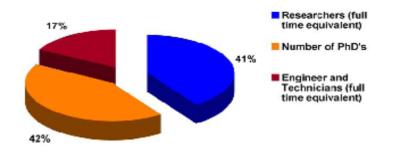
• For each platform

- A team to receive the proposed projects.
- Technological feasibility and cost evaluation.
- Agreement for cost supporting to be defined between the proposer and the platform.
- Training programs for the proposer to participate actively to the execution of the process


Common tools

- Centralized network administration via the administrative manager
- A WEB site:www.rtb.cnrs.frwww.fr (also limited English version)
- Definition of external projects and evaluation criteria."Charte d'accueil".
- E-mail alias for project dispatching (rtb-accueil@cnrs-dir.fr).
- Annual meeting to discuss external project reception.
- Technical meetings for expertise enhancement.
- Centralized annual survey of external projects.
- Satisfaction questionnaire addressed to the external users.
- Evaluation of the network
 - Annual report to internationals experts

289 external projects performed in the network by the CNRS platforms.


- 1. Micro-and nano-electonics
- 2. Nanotechnologies
- 3. Photonics and Optoelectronics
- 4. Heterogeneous integration
- 5. Microsystems
- 6. Others

Laboratoire d'Analyse et d'Architecture des Systèmes TRNETWORK : PEOPLE INVOLVED INTECHNOLOGICAL RESEARCH

BTR lab	Researchers (full time equivalent)	Number of PhD's	Engineer and Technicians (full time equivalent)
FEMTO-ST	32	45	14
FMNT	95 ⁽¹⁾	100	33
IEMN	60	88	21
IEF	34	15	15
LPN	41	14	25
LAAS	57	73	25
CNRS-ST2I			1
TOTAL	319	335	134

⁽¹⁾ The platform is not fully operational. The number is a prediction

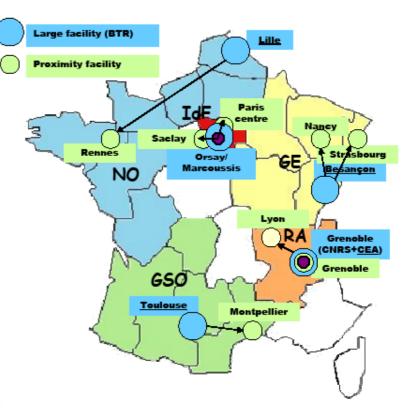
RENATECH

Laboratoire d'Analyse et d'Architecture des Systèmes BTR NETWORK : HARING A TECHNICAL EXPERTISE

AAS-CNRS

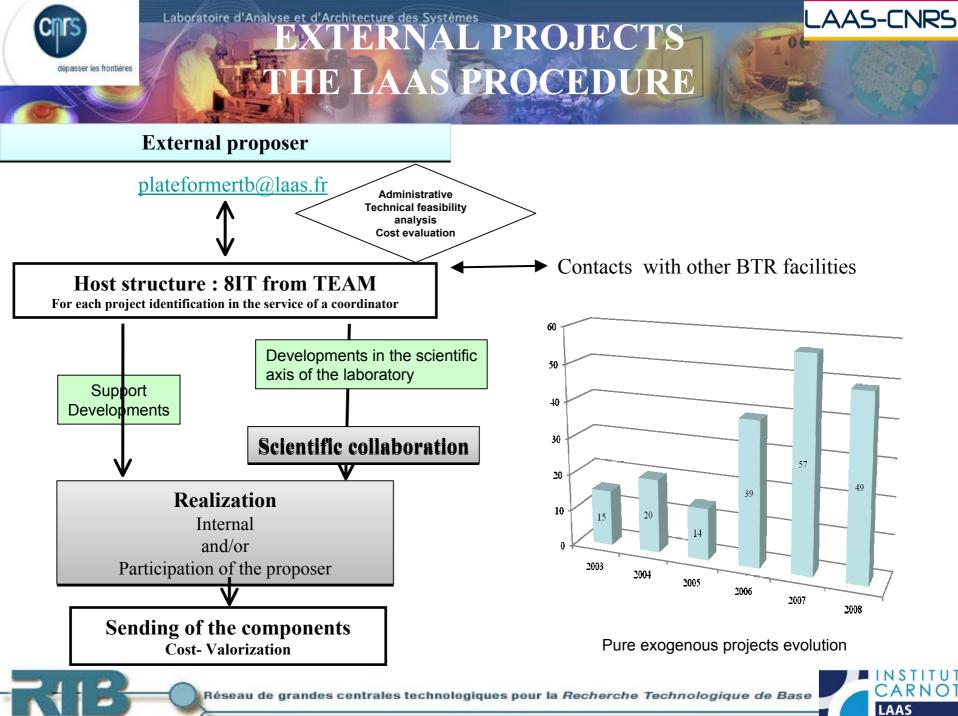
LAAS

- Since 2004 : internal technical work groups on process know-how (resp. leaders: J.L. Lorriaux, IEMN, F. Hamouda, IEF, H. Granier, LAAS)
 - LITHOGRAPHY PROCESSES
 - Electronic lithography, U.V. and nano-printing.
 - DEPOSITION PROCESSES
 - Stress measurement, equipments for thin layer characterization, and electrolytic deposit, surface modification by chemical treatment, inkjet printing
 - ETCHING TECHNIQUES
 - Ion beam etching systems (FIB, IBE), end point detection systems, assembly techniques.
- This provides a links between engineers and technicians of all the facilities.
 - Dedicated workshops for the diffusion of information (1/yr)
 - Networking for the purchase of equipments (diffusion of information, grouped purchases)
- Enhancement of the global competence level and the cooperation between facilities.
 - Training



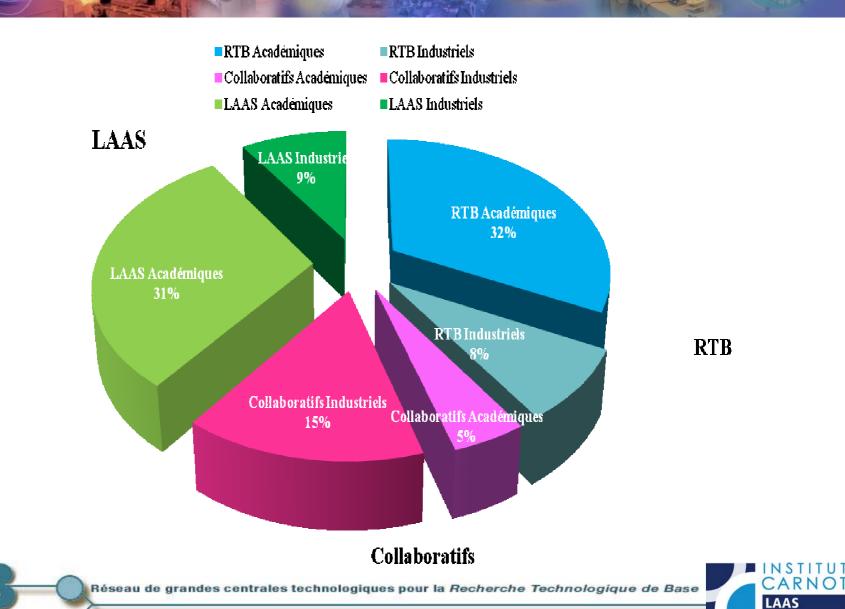
STR NETWORK : THE FUTURE

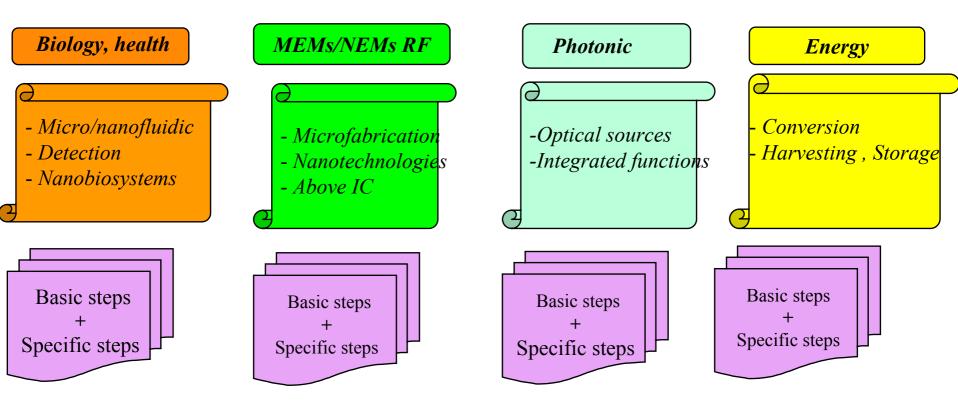
- The main platforms of Renatech dispatched over the country
 - o Each platform is the regional reference with a large coverage of the technologies
 - + proximity platforms
 - o With specialists in well defined fields
- Double coordination
 - Regional : main and proximity platform associated
 - National : CEA-CNRS


RENATECH 2010-2014

RENATECH

AAS-CNRS




HE PROJECTS THEIR ORIGIN

LAAS-CNRS

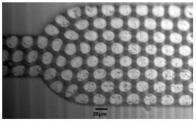
06

Technologies for N/MEMS

Micro an nano systems: biology, health, environment Micro nanofluidics

Multilevel polymer technology

Surface nano-engineering


- Grafting technologies: silanes UV photografting
- Switchable surfaces

Actuation of fluids and molecules :

• Actuators: Microarray of individually addressable ejectors, Pyrotechnic valves, Flow monitoring using stimuli-responsive SAMs

- Flow engineering using active molecular layers
- Magnetic actuation
- Thermal engineering **Nanofluidics :**

- Di phasic nanofluidics for optics
- DNA combing for replication study

100 µm

fraction volumique elevée.géométrie en T bull

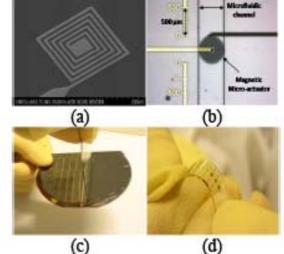
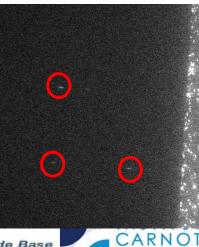
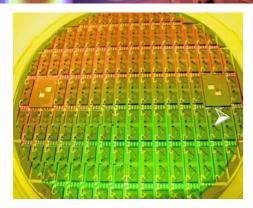



Figure 2 Photographs of the final flexible microsystem. (a) A square magnetic micro-actuator with 5 turns; (b) A spiral micro-inductor embedded in micro-channel. (c) The final step to the technological process: releasing from

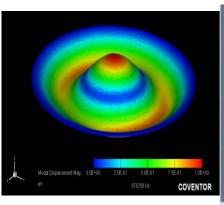
silicon Diect imaging of DNA macromolecules sterched in nnochannels

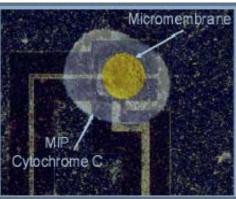
CNRS-LAAS 10.0kV 9.2mm x3.50k SE(U)	10.0um


LAAS

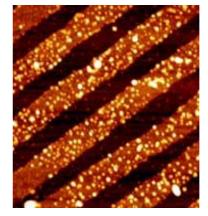
.AAS-CNRS

Aicro an nano systems: biology, health, environment **Detection**

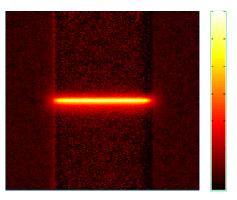

ChemFET



Gaz microsensor



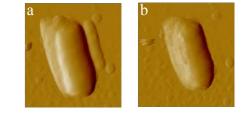
Pressure microsensor



Electromechanic Transduction (piezoelectric)

Optical transduction (<u>diffraction</u>)

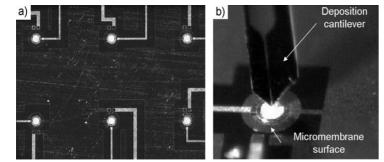
Electro-themal transduction (silicon nanowire)


LAAS-CNRS

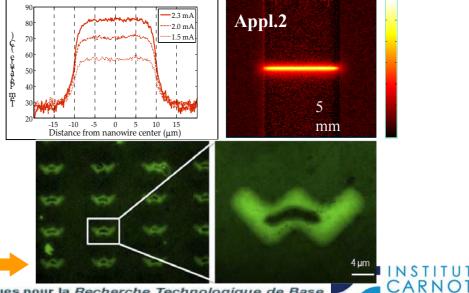
NanoBioSystems

Nanobiosystems' road-map is « DNA-like » double-stranded:

- BIOLOGY-related issues using NANOSYSTEMS
- NANOSYSTEMS-related issues being inspired by BIOLOGY.
- Nanowires for highly resolutive thermometry
- Bioplume: submicron-scale liquid-phase deposition of various materials
- DifraChip: using nanoscale patterning for label-free detection (limit of detection : 100pM)
- Exploring living cells at the nanoscale (yeast, bacteria, fibroblast)

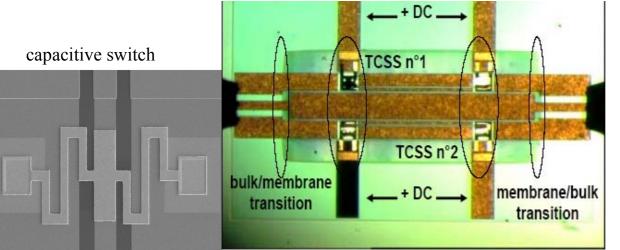


AAS-CNRS

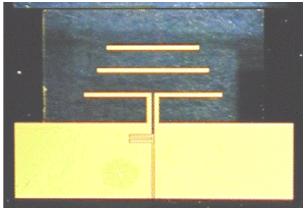

N S T I T U 1

LAAS

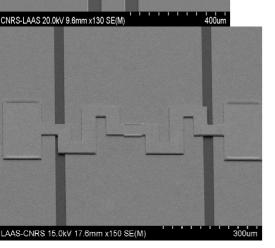
Images of a) a matrix of piezoelectric micromembranes with a global radius of 100 µm and b) a cantilever loaded with MIP precursor solution during deposition onto a micromembrane

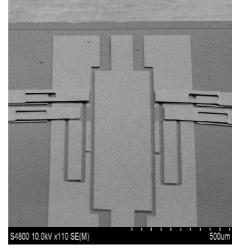


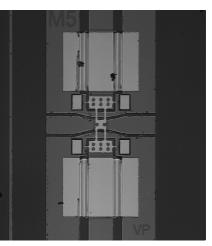
Biotinylated bacteria deposition on a microstructured surface with epoxide-streptavidin functionalized patterns



LAAS-CNRS

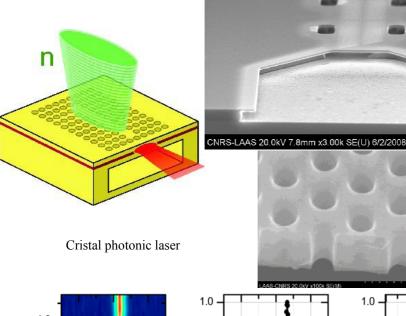

RF MEMS/NEMS Bulk Silicon Micromachining

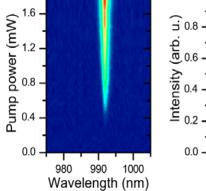

60 GHz Suspended filter

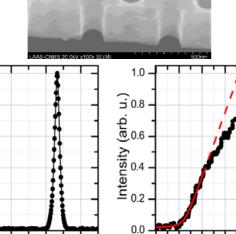

77 Ghz suspended yagi antenna

lépasser les frontières

tunable filter @60 Ghz

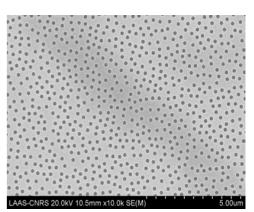

Tunable MEMS 10 GHz to 94 GHz



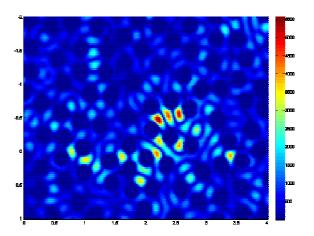


Photonic Optical Sources

10.0um

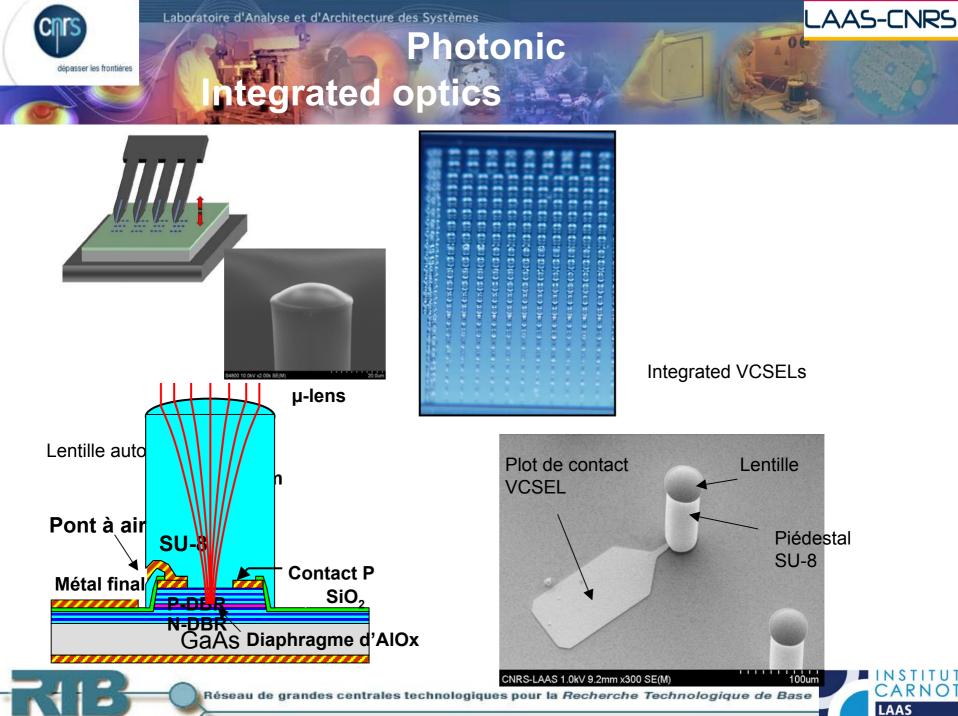

990

Wavelength (nm)

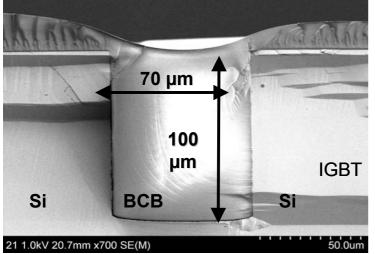

980

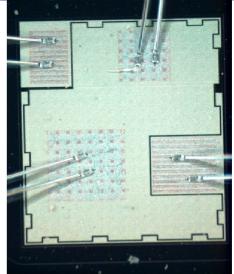
1000

0.0 0.4 0.8 1.2 1.6 Pump power (mW)

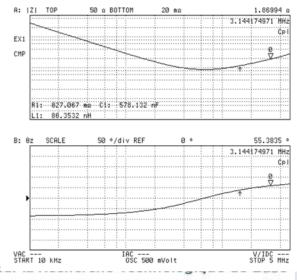


(In)GaAs/AlGaAs menbrane

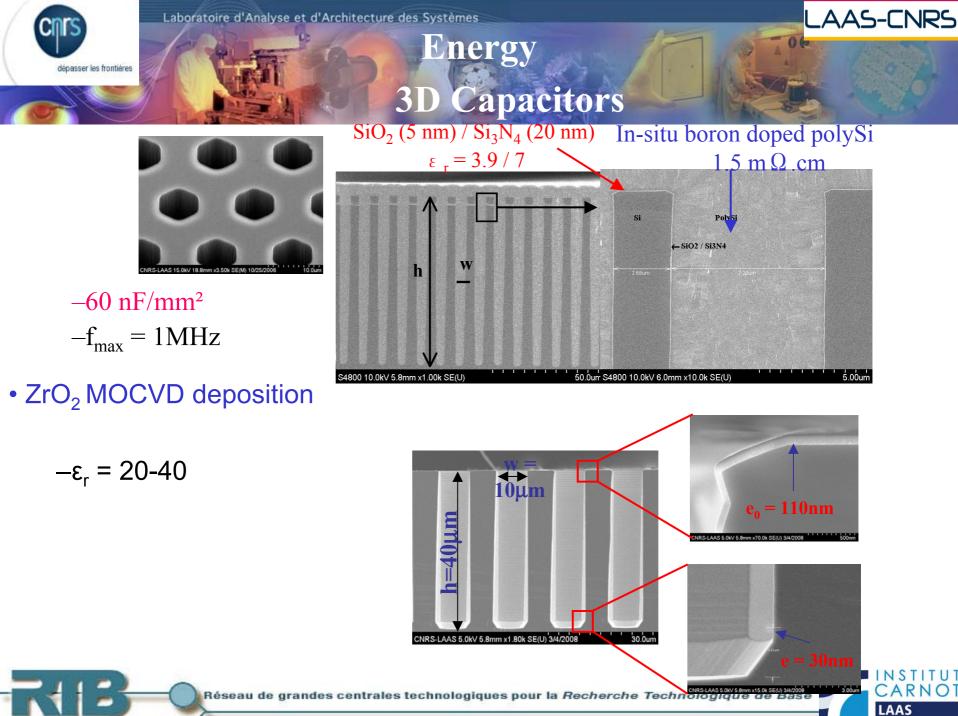

LAAS-CNRS


LAAS-CNRS

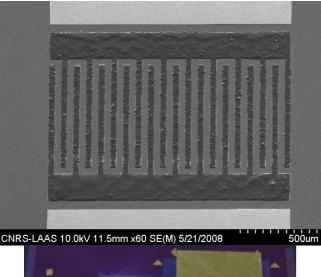
Energy Conversion

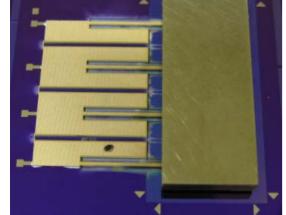


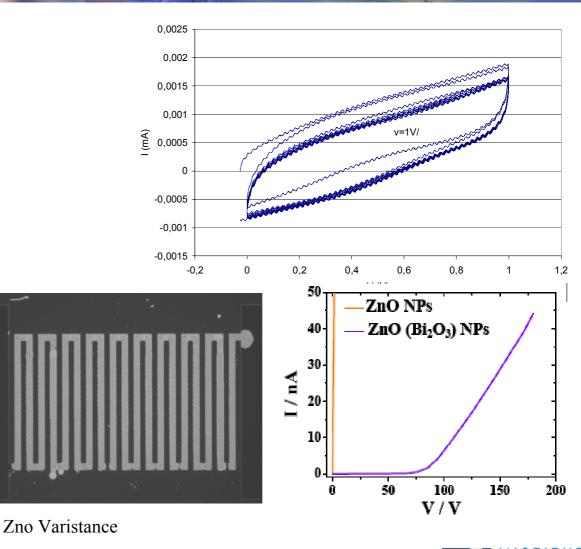
Superjonction Power MOSFET



IGBTIow losses

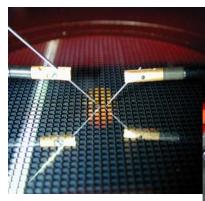





Energy Harvesting, storage, protection

Supercapitors: inkjet deposition

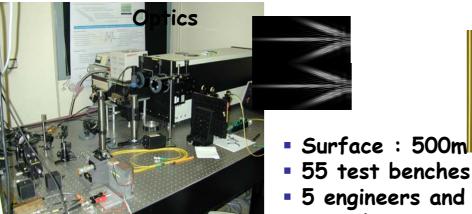
MEMs harvesting



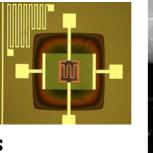


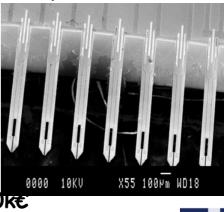
Characterization facilities

Tests and characterizations (P) of materials, components and systems:



Electronics




Ultra High Frequency

Micro & Nano Systems

- 5 engineers and technicians
- Annual operational budget ~80k€

LAAS-CNRS

NSTITUT CARNOT

LAAS